Merchandise Description

Particulars Images:

one.It is outfitted with an angular speak to ball bearing, so it can help the exterior load with the rigid moment and massive allowable moment
two.Easy assemble, little vibration
three.It can reduce the motor straight junction (enter equipment) and inertia
four.Big torsional rigidity
5.Strong effect resistance (500% of rated torque)
6.The crankshaft is supported by 2 columns in the reducer
7.Excellent beginning efficiency & Little dress in and lengthy provider lifestyle
eight.Little backlash (1arc. Min.) & Use rolling bearing
9.Powerful affect resistance (500% of rated torque)
10.The variety of simultaneous engagements amongst RV gear and needle tooth is huge

Positive aspects:
1. Higher precision, higher torque
two. Committed technological staff can be on the go to supply design options
three. Manufacturing facility direct product sales good workmanship resilient good quality assurance
4. Merchandise top quality troubles have a one particular-12 months guarantee time, can be returned for replacement or fix

Firm profile:

HangZhou CZPT Technologies Co., Ltd. was set up in 2014. Based on extended-expression amassed knowledge in mechanical layout and production, a variety of types of harmonic reducers have been produced according to the different requirements of customers. The company is in a stage of speedy growth. , Gear and staff are constantly growing. Now we have a group of skilled specialized and managerial personnel, with advanced products, complete screening methods, and item producing and design abilities. Solution layout and manufacturing can be carried out in accordance to client demands, and a variety of substantial-precision transmission factors this sort of as harmonic reducers and RV reducers have been shaped the merchandise have been offered in domestic and worldwide(Such as United states, Germany, Turkey, India) and have been employed in industrial robots, device instruments, healthcare products, laser processing, cutting, and dispensing, Brush generating, LED tools producing, precision digital tools, and other industries have established a great track record.
In the future, Hongwing will adhere to the goal of accumulating abilities, keeping close to the market, and technological innovation, have CZPT the benefit pursuit in the discipline of harmonic generate&RV reducers, seek out the widespread improvement of the company and the modern society, and quietly develop alone into a CZPT brand name with impartial mental home rights. High quality provider in the field of precision transmission”.

Power manufacturing facility:

Our plant has an entire campus The number of workshops is around 300 Regardless of whether it truly is from the manufacturing of uncooked resources and the procurement of uncooked supplies to the inspection of completed goods, we are carrying out it ourselves. There is a complete creation program

HST-I Parameter:

Rated Desk
Output rotational speed (rpm) 5 ten fifteen 20 twenty five thirty 40 fifty 60
Model Speed ratio code Transmission Ratio(R) Output Torque  (Nm)
/
Enter the potential (kW
Rotation of axes Housing rotation
RV-6E 31 31 30 101
/ .07
81
/ .eleven
72
/ .fifteen
66
/ .19
62
/ .22
58
/ .25
54
/ .30
50
/ .35
47
/ .forty
forty three 43 42
fifty three.five 53.5 52.five
fifty nine 59 58
79 seventy nine 78
103 103 102
RV-20E 57 57 56 231
/ .sixteen
188
/ .26
167
/ .35
153
/ .43
143
/ .50
135
/ .fifty seven
124
/ .70
115
/ .81
110
/ .92
eighty one eighty one 80
one hundred and five 105 104
121 121 120
141 141 140
161 161 160
RV-40E 57 57 56 572
/ .forty
465
/ .65
412
/ .86
377
/ 1.05
353
/ 1.23
334
/ 1.forty
307
/ 1.seventy one
287
/ 2.00
271
/ 2.27
81 eighty one 80
a hundred and five 105 104
121 121 120
153 153 152
RV-80E fifty seven fifty seven 56 1,088
/ .seventy six
885
/ 1.24
784
/ 1.sixty four
719
/ 2.01
672
/ 2.35
637
/ 2.sixty seven
584
/ 3.26
546
/ 3.eighty one
517
/ 4.33
eighty one 81 80
one zero one one hundred and one 100
121 121 120
153 one(153) 1(152)
RV-110E 81 eighty one 80 1,499
/ 1.05
1,215
/ 1.70
1,078
/ 2.26
990
/ 2.76
925
/ 3.23
875
/ 3.sixty seven
804
/ 4.forty nine
   
111 111 110
161 161 160
one hundred seventy five 1227/7 1220/seven
RV-160E eighty one eighty one 80 2,176
/ 1.52
1,774
/ 2.48
1,568
/ 3.28
1,441
/ 4.02
1,343
/ 4.69
1,274
/ 5.34
     
101 one hundred and one 100
129 129 128
a hundred forty five one hundred forty five 144
171 171 170
RV-320E 81 81 80 4,361
/ 3.04
3,538
/ 4.ninety four
3,136
/ 6.fifty seven
2,881
/ 8.05
2,695
/ 9.forty one
2,548
/ 10.seven
     
one hundred and one a hundred and one 100
118.five 118.5 117.5
129 129 128
141 141 140
171 171 170
185 185 184
RV-450E eighty one eighty one 80 6,a hundred thirty five
/ 4.28
4,978
/ 6.95
4,410
/ 9.24
4,047
/ eleven.three
3,783
/ thirteen.2
       
101 one zero one 100
118.5 118.five 117.five
129 129 128
154.8 2013/13 2000/thirteen
171 171 170
192 1347/7 1340/seven
Notice: 1. The allowable output velocity is influenced by duty cycle, load, and ambient temperature. When the allowable output speed is over NS1, remember to seek advice from our organization about the safeguards.
2. Compute the enter ability (kW) by the following method.
Input ability (kW) =(2π*N*T)/(sixty*η/a hundred*10*10*ten)   N: output pace (RPM)
T: output torque (nm)
η =  seventy five: reducer performance (%)
 The input potential is the reference worth.
3. When using the reducer at a lower temperature, the no-load managing torque will increase, so you should pay attention when choosing the motor.
(refer to p.ninety three lower-temperature traits)

T0
Rated torque(Remark .7)
N0
Rated output speed
K
Rated daily life
TS1
Allowable starting up and stopping torque
TS2
Instantaneous maximum allowable torque
NS0
Allowable maximum output speed
(Remark .1)
Backlash Empty distance MAX. Angle transmission mistake MAX. A representative benefit of starting up effectiveness MO1
Allowable instant
(Remark .4)
MO2
Instantaneous greatest allowable minute
Wr
Allowable radial load
(Remark .ten)
               I
Converted benefit of inertia second enter shaft
(Remark .5)
Excess weight
(Nm) (rpm) (h) (Nm) (Nm) (r/min) (arc.sec.) (arc.min.) (arc.sec.) (%) (Nm) (Nm) (N) (kgm2) (kg)
58 30 6,000 117 294 100 1.five 1.5 80 70 196 392 2,140 two.63×10-6 2.five
2.00×10-six
1.53×10-six
one.39×10-6
1.09×10-six
.74×10-six
167 15 6,000 412 833 75 1. 1. 70 75 882 1,764 7,785 9.66×10-6 4.seven
6.07×10-six
4.32×10-6
three.56×10-6
two.88×10-six
two.39×10-six
412 15 6,000 1,571 2,058 70 1. 1. 60 85 1,666 3,332 11,594 3.25×10-5 9.3
2.20×10-five
one.63×10-5
1.37×10-5
1.01×10-five
784 15 6,000 1,960 Bolt tightening 3920 70 1. 1. 50 85 Bolt fastening 2156 Bolt tightening Bolt tightening 12988 8.16×10-5 Bolt tightening 13.one
six.00×10-5
4.82×10-five
Pin blend 3185 Pin combination 1735 Pin mix 2156 Pin mix 1571 Pin mixture 12.seven
3.96×10-five
two.98×10-5
1,078 15 6,000 2,695 5,390 50 1. 1. 50 85 2,940 5,880 16,648 9.88×10-five 17.four
6.96×10-5
4.36×10-five
three.89×10-5
1,568 15 6,000 3,920 Bolt tightening 7840 45 1. 1. 50 85 3,920 Bolt tightening 7840 18,587 1.77×10-four 26.4
1.40×10-four
1.06×10-4
Pin and use 6615 Pin and use 6762
.87×10-4
.74×10-4
3,136 15 6,000 7,840 Bolt tightening 15680 35 1. 1. 50 80 Bolt tightening 7056 Bolt tightening 14112 Bolt tightening 28067 four.83×10-4 44.three
3.79×10-4
three.15×10-four
2.84×10-4
Pin mix 12250 Pin mix 6174 Pin and use 1571 Pin combination 24558
2.54×10-4
1.97×10-four
1.77×10-four
4,410 15 6,000 11,571 Bolt tightening 22050 25 1. 1. 50 85 8,820 Bolt tightening 17640 30,133 eight.75×10-four 66.four
six.91×10-four
5.75×10-4
5.20×10-4
Pin and use 18620 Pin and use 13524
4.12×10-four
three.61×10-4
three.07×10-4
four. The allowable torque will fluctuate in accordance to the thrust load. You should affirm by the allowable second line diagram (p.91).
5. The benefit of inertia moment is the benefit of the reducer physique. The second of inertia of the input equipment is not incorporated.
six. For minute stiffness and torsion stiffness, remember to refer to the calculation of inclination angle and torsion angle (p.99).
7. Rated torque refers to the torque worth reflecting the rated existence at rated output speed, not the data displaying the upper restrict of load. Please refer to the glossary (p.eighty one) and item selection movement chart (p.82).
eight. If you want to buy merchandise other than the previously mentioned speed ratio, you should check with our business.
9. The over specs are attained according to the firm’s analysis strategy. Remember to validate that the product satisfies the use circumstances of carrying genuine aircraft before use.
10. When a radial load is used to dimension B, please use it inside the allowable radial load assortment.
eleven. 1 RV-80e r = 153 is only output shaft bolt fastening variety( P.20,21)

Apps:

FQA:
Q: What need to I supply when I choose a gearbox/pace reducer?
A: The best way is to provide the motor drawing with parameters. Our engineer will check out and advocate the most ideal gearbox model for your reference.
Or you can also offer the under specification as nicely:
one) Variety, product, and torque.
2) Ratio or output velocity
three) Functioning problem and connection strategy
4) Quality and put in equipment title
five) Enter method and input speed
six) Motor manufacturer product or flange and motor shaft size
 


/ Piece
|
1 Piece

(Min. Order)

###

Application: Motor, Motorcycle, Machinery, Agricultural Machinery
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Layout: Coaxial
Gear Shape: Cylindrical Gear
Step: Single-Step

###

Samples:
US$ 600/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:
Available

|


###

Rated Table
Output rotational speed (rpm) 5 10 15 20 25 30 40 50 60
Model Speed ratio code Transmission Ratio(R) Output Torque  (Nm)
/
Enter the capacity (kW
Rotation of axes Housing rotation
RV-6E 31 31 30 101
/ 0.07
81
/ 0.11
72
/ 0.15
66
/ 0.19
62
/ 0.22
58
/ 0.25
54
/ 0.30
50
/ 0.35
47
/ 0.40
43 43 42
53.5 53.5 52.5
59 59 58
79 79 78
103 103 102
RV-20E 57 57 56 231
/ 0.16
188
/ 0.26
167
/ 0.35
153
/ 0.43
143
/ 0.50
135
/ 0.57
124
/ 0.70
115
/ 0.81
110
/ 0.92
81 81 80
105 105 104
121 121 120
141 141 140
161 161 160
RV-40E 57 57 56 572
/ 0.40
465
/ 0.65
412
/ 0.86
377
/ 1.05
353
/ 1.23
334
/ 1.40
307
/ 1.71
287
/ 2.00
271
/ 2.27
81 81 80
105 105 104
121 121 120
153 153 152
RV-80E 57 57 56 1,088
/ 0.76
885
/ 1.24
784
/ 1.64
719
/ 2.01
672
/ 2.35
637
/ 2.67
584
/ 3.26
546
/ 3.81
517
/ 4.33
81 81 80
101 101 100
121 121 120
153 1(153) 1(152)
RV-110E 81 81 80 1,499
/ 1.05
1,215
/ 1.70
1,078
/ 2.26
990
/ 2.76
925
/ 3.23
875
/ 3.67
804
/ 4.49
   
111 111 110
161 161 160
175 1227/7 1220/7
RV-160E 81 81 80 2,176
/ 1.52
1,774
/ 2.48
1,568
/ 3.28
1,441
/ 4.02
1,343
/ 4.69
1,274
/ 5.34
     
101 101 100
129 129 128
145 145 144
171 171 170
RV-320E 81 81 80 4,361
/ 3.04
3,538
/ 4.94
3,136
/ 6.57
2,881
/ 8.05
2,695
/ 9.41
2,548
/ 10.7
     
101 101 100
118.5 118.5 117.5
129 129 128
141 141 140
171 171 170
185 185 184
RV-450E 81 81 80 6,135
/ 4.28
4,978
/ 6.95
4,410
/ 9.24
4,047
/ 11.3
3,783
/ 13.2
       
101 101 100
118.5 118.5 117.5
129 129 128
154.8 2013/13 2000/13
171 171 170
192 1347/7 1340/7
Note: 1. The allowable output speed is affected by duty cycle, load, and ambient temperature. When the allowable output speed is above NS1, please consult our company about the precautions.
2. Calculate the input capacity (kW) by the following formula.
Input capacity (kW) =(2π*N*T)/(60*η/100*10*10*10)   N: output speed (RPM)
T: output torque (nm)
η =  75: reducer efficiency (%)
 The input capacity is the reference value.
3. When using the reducer at a low temperature, the no-load running torque will increase, so please pay attention when selecting the motor.
(refer to p.93 low-temperature characteristics)

###

T0
Rated torque(Remark .7)
N0
Rated output speed
K
Rated life
TS1
Allowable starting and stopping torque
TS2
Instantaneous maximum allowable torque
NS0
Allowable maximum output speed
(Remark .1)
Backlash Empty distance MAX. Angle transmission error MAX. A representative value of starting efficiency MO1
Allowable moment
(Remark .4)
MO2
Instantaneous maximum allowable moment
Wr
Allowable radial load
(Remark .10)
               I
Converted value of inertia moment input shaft
(Remark .5)
Weight
(Nm) (rpm) (h) (Nm) (Nm) (r/min) (arc.sec.) (arc.min.) (arc.sec.) (%) (Nm) (Nm) (N) (kgm2) (kg)
58 30 6,000 117 294 100 1.5 1.5 80 70 196 392 2,140 2.63×10-6 2.5
2.00×10-6
1.53×10-6
1.39×10-6
1.09×10-6
0.74×10-6
167 15 6,000 412 833 75 1.0 1.0 70 75 882 1,764 7,785 9.66×10-6 4.7
6.07×10-6
4.32×10-6
3.56×10-6
2.88×10-6
2.39×10-6
412 15 6,000 1,029 2,058 70 1.0 1.0 60 85 1,666 3,332 11,594 3.25×10-5 9.3
2.20×10-5
1.63×10-5
1.37×10-5
1.01×10-5
784 15 6,000 1,960 Bolt tightening 3920 70 1.0 1.0 50 85 Bolt fastening 2156 Bolt tightening Bolt tightening 12988 8.16×10-5 Bolt tightening 13.1
6.00×10-5
4.82×10-5
Pin combination 3185 Pin combination 1735 Pin combination 2156 Pin combination 10452 Pin combination 12.7
3.96×10-5
2.98×10-5
1,078 15 6,000 2,695 5,390 50 1.0 1.0 50 85 2,940 5,880 16,648 9.88×10-5 17.4
6.96×10-5
4.36×10-5
3.89×10-5
1,568 15 6,000 3,920 Bolt tightening 7840 45 1.0 1.0 50 85 3,920 Bolt tightening 7840 18,587 1.77×10-4 26.4
1.40×10-4
1.06×10-4
Pin and use 6615 Pin and use 6762
0.87×10-4
0.74×10-4
3,136 15 6,000 7,840 Bolt tightening 15680 35 1.0 1.0 50 80 Bolt tightening 7056 Bolt tightening 14112 Bolt tightening 28067 4.83×10-4 44.3
3.79×10-4
3.15×10-4
2.84×10-4
Pin combination 12250 Pin combination 6174 Pin and use 10976 Pin combination 24558
2.54×10-4
1.97×10-4
1.77×10-4
4,410 15 6,000 11,025 Bolt tightening 22050 25 1.0 1.0 50 85 8,820 Bolt tightening 17640 30,133 8.75×10-4 66.4
6.91×10-4
5.75×10-4
5.20×10-4
Pin and use 18620 Pin and use 13524
4.12×10-4
3.61×10-4
3.07×10-4
4. The allowable torque will vary according to the thrust load. Please confirm by the allowable moment line diagram (p.91).
5. The value of inertia moment is the value of the reducer body. The moment of inertia of the input gear is not included.
6. For moment stiffness and torsion stiffness, please refer to the calculation of inclination angle and torsion angle (p.99).
7. Rated torque refers to the torque value reflecting the rated life at rated output speed, not the data showing the upper limit of load. Please refer to the glossary (p.81) and product selection flow chart (p.82).
8. If you want to buy products other than the above speed ratio, please consult our company.
9. The above specifications are obtained according to the company’s evaluation method. Please confirm that the product meets the use conditions of carrying real aircraft before use.
10. When a radial load is applied to dimension B, please use it within the allowable radial load range.
11. 
1 RV-80e r = 153 is only output shaft bolt fastening type( P.20,21)

/ Piece
|
1 Piece

(Min. Order)

###

Application: Motor, Motorcycle, Machinery, Agricultural Machinery
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Layout: Coaxial
Gear Shape: Cylindrical Gear
Step: Single-Step

###

Samples:
US$ 600/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:
Available

|


###

Rated Table
Output rotational speed (rpm) 5 10 15 20 25 30 40 50 60
Model Speed ratio code Transmission Ratio(R) Output Torque  (Nm)
/
Enter the capacity (kW
Rotation of axes Housing rotation
RV-6E 31 31 30 101
/ 0.07
81
/ 0.11
72
/ 0.15
66
/ 0.19
62
/ 0.22
58
/ 0.25
54
/ 0.30
50
/ 0.35
47
/ 0.40
43 43 42
53.5 53.5 52.5
59 59 58
79 79 78
103 103 102
RV-20E 57 57 56 231
/ 0.16
188
/ 0.26
167
/ 0.35
153
/ 0.43
143
/ 0.50
135
/ 0.57
124
/ 0.70
115
/ 0.81
110
/ 0.92
81 81 80
105 105 104
121 121 120
141 141 140
161 161 160
RV-40E 57 57 56 572
/ 0.40
465
/ 0.65
412
/ 0.86
377
/ 1.05
353
/ 1.23
334
/ 1.40
307
/ 1.71
287
/ 2.00
271
/ 2.27
81 81 80
105 105 104
121 121 120
153 153 152
RV-80E 57 57 56 1,088
/ 0.76
885
/ 1.24
784
/ 1.64
719
/ 2.01
672
/ 2.35
637
/ 2.67
584
/ 3.26
546
/ 3.81
517
/ 4.33
81 81 80
101 101 100
121 121 120
153 1(153) 1(152)
RV-110E 81 81 80 1,499
/ 1.05
1,215
/ 1.70
1,078
/ 2.26
990
/ 2.76
925
/ 3.23
875
/ 3.67
804
/ 4.49
   
111 111 110
161 161 160
175 1227/7 1220/7
RV-160E 81 81 80 2,176
/ 1.52
1,774
/ 2.48
1,568
/ 3.28
1,441
/ 4.02
1,343
/ 4.69
1,274
/ 5.34
     
101 101 100
129 129 128
145 145 144
171 171 170
RV-320E 81 81 80 4,361
/ 3.04
3,538
/ 4.94
3,136
/ 6.57
2,881
/ 8.05
2,695
/ 9.41
2,548
/ 10.7
     
101 101 100
118.5 118.5 117.5
129 129 128
141 141 140
171 171 170
185 185 184
RV-450E 81 81 80 6,135
/ 4.28
4,978
/ 6.95
4,410
/ 9.24
4,047
/ 11.3
3,783
/ 13.2
       
101 101 100
118.5 118.5 117.5
129 129 128
154.8 2013/13 2000/13
171 171 170
192 1347/7 1340/7
Note: 1. The allowable output speed is affected by duty cycle, load, and ambient temperature. When the allowable output speed is above NS1, please consult our company about the precautions.
2. Calculate the input capacity (kW) by the following formula.
Input capacity (kW) =(2π*N*T)/(60*η/100*10*10*10)   N: output speed (RPM)
T: output torque (nm)
η =  75: reducer efficiency (%)
 The input capacity is the reference value.
3. When using the reducer at a low temperature, the no-load running torque will increase, so please pay attention when selecting the motor.
(refer to p.93 low-temperature characteristics)

###

T0
Rated torque(Remark .7)
N0
Rated output speed
K
Rated life
TS1
Allowable starting and stopping torque
TS2
Instantaneous maximum allowable torque
NS0
Allowable maximum output speed
(Remark .1)
Backlash Empty distance MAX. Angle transmission error MAX. A representative value of starting efficiency MO1
Allowable moment
(Remark .4)
MO2
Instantaneous maximum allowable moment
Wr
Allowable radial load
(Remark .10)
               I
Converted value of inertia moment input shaft
(Remark .5)
Weight
(Nm) (rpm) (h) (Nm) (Nm) (r/min) (arc.sec.) (arc.min.) (arc.sec.) (%) (Nm) (Nm) (N) (kgm2) (kg)
58 30 6,000 117 294 100 1.5 1.5 80 70 196 392 2,140 2.63×10-6 2.5
2.00×10-6
1.53×10-6
1.39×10-6
1.09×10-6
0.74×10-6
167 15 6,000 412 833 75 1.0 1.0 70 75 882 1,764 7,785 9.66×10-6 4.7
6.07×10-6
4.32×10-6
3.56×10-6
2.88×10-6
2.39×10-6
412 15 6,000 1,029 2,058 70 1.0 1.0 60 85 1,666 3,332 11,594 3.25×10-5 9.3
2.20×10-5
1.63×10-5
1.37×10-5
1.01×10-5
784 15 6,000 1,960 Bolt tightening 3920 70 1.0 1.0 50 85 Bolt fastening 2156 Bolt tightening Bolt tightening 12988 8.16×10-5 Bolt tightening 13.1
6.00×10-5
4.82×10-5
Pin combination 3185 Pin combination 1735 Pin combination 2156 Pin combination 10452 Pin combination 12.7
3.96×10-5
2.98×10-5
1,078 15 6,000 2,695 5,390 50 1.0 1.0 50 85 2,940 5,880 16,648 9.88×10-5 17.4
6.96×10-5
4.36×10-5
3.89×10-5
1,568 15 6,000 3,920 Bolt tightening 7840 45 1.0 1.0 50 85 3,920 Bolt tightening 7840 18,587 1.77×10-4 26.4
1.40×10-4
1.06×10-4
Pin and use 6615 Pin and use 6762
0.87×10-4
0.74×10-4
3,136 15 6,000 7,840 Bolt tightening 15680 35 1.0 1.0 50 80 Bolt tightening 7056 Bolt tightening 14112 Bolt tightening 28067 4.83×10-4 44.3
3.79×10-4
3.15×10-4
2.84×10-4
Pin combination 12250 Pin combination 6174 Pin and use 10976 Pin combination 24558
2.54×10-4
1.97×10-4
1.77×10-4
4,410 15 6,000 11,025 Bolt tightening 22050 25 1.0 1.0 50 85 8,820 Bolt tightening 17640 30,133 8.75×10-4 66.4
6.91×10-4
5.75×10-4
5.20×10-4
Pin and use 18620 Pin and use 13524
4.12×10-4
3.61×10-4
3.07×10-4
4. The allowable torque will vary according to the thrust load. Please confirm by the allowable moment line diagram (p.91).
5. The value of inertia moment is the value of the reducer body. The moment of inertia of the input gear is not included.
6. For moment stiffness and torsion stiffness, please refer to the calculation of inclination angle and torsion angle (p.99).
7. Rated torque refers to the torque value reflecting the rated life at rated output speed, not the data showing the upper limit of load. Please refer to the glossary (p.81) and product selection flow chart (p.82).
8. If you want to buy products other than the above speed ratio, please consult our company.
9. The above specifications are obtained according to the company’s evaluation method. Please confirm that the product meets the use conditions of carrying real aircraft before use.
10. When a radial load is applied to dimension B, please use it within the allowable radial load range.
11. 
1 RV-80e r = 153 is only output shaft bolt fastening type( P.20,21)

The Advantages of Using a Cyclone Gearbox

Using a cycloidal gearbox to drive an input shaft is a very effective way to reduce the speed of a machine. It does this by reducing the speed of the input shaft by a predetermined ratio. It is capable of very high ratios in relatively small sizes.helical gearbox

Transmission ratio

Whether you’re building a marine propulsion system or a pump for the oil and gas industry, there are certain advantages to using cycloidal gearboxes. Compared to other gearbox types, they’re shorter and have better torque density. These gearboxes also offer the best weight and positioning accuracy.
The basic design of a cycloidal gearbox is similar to that of a planetary gearbox. The main difference is in the profile of the gear teeth.
Cycloid gears have less tooth flank wear and lower Hertzian contact stress. They also have lower friction and torsional stiffness. These advantages make them ideal for applications that involve heavy loads or high-speed drives. They’re also good for high gear ratios.
In a cycloidal gearbox, the input shaft drives an eccentric bearing, while the output shaft drives the cycloidal disc. The cycloidal disc rotates around a fixed ring, and the pins of the ring gear engage the holes in the disc. The pins then drive the output shaft as the disc rotates.
Cycloid gears are ideal for applications that require high gear ratios and low friction. They’re also good for applications that require high torsional stiffness and shock load resistance. They’re also suitable for applications that require a compact design and low backlash.
The transmission ratio of a cycloidal gearbox is determined by the number of lobes on the cycloidal disc. The n=n design of the cycloidal disc moves one lobe per revolution of the input shaft.
Cycloid gears can be manufactured to reduce the gear ratio from 30:1 to 300:1. These gears are suitable for high-end applications, especially in the automation industry. They also offer the best positioning accuracy and backlash. However, they require special manufacturing processes and require non-standard characteristics.

Compressive force

Compared with conventional gearboxes, the cycloidal gearbox has a unique set of kinematics. It has an eccentric bearing in a rotating frame, which drives the cycloidal disc. It is characterized by low backlash and torsional stiffness, which enables geared motion.
In this study, the effects of design parameters were investigated to develop the optimal design of a cycloidal reducer. Three main rolling nodes were studied: a cycloidal disc, an outer race and the input shaft. These were used to analyze the motion related dynamic forces, which can be used to calculate stresses and strains. The gear mesh frequency was calculated using a formula, which incorporated a correction factor for the rotating frame of the outer race.
A three-dimensional finite element analysis (FEA) study was conducted to evaluate the cycloidal disc. The effects of the size of the holes on the disc’s induced stresses were investigated. The study also looked at the torque ripple of a cycloidal drive.
The authors of this study also explored backlash distribution in the output mechanism, which took into account the machining deviations and structure and geometry of the output mechanism. The study also looked at the relative efficiency of a cycloidal reducer, which was based on a single disc cycloidal reducer with a one-tooth difference.
The authors of this study were able to deduce the contact stress of the cycloidal disc, which is calculated using the material-based contact stiffness. This can be used to determine accurate contact stresses in a cycloidal gearbox.
It is important to know the ratios needed for calculation of the bearing rate. This can be calculated using the formula f = k (S x R) where S is the volume of the element, R is the mass, k is the contact stiffness and f is the force vector.helical gearbox

Rotational direction

Unlike the conventional ring gear which has a single axis of rotation, cycloidal gearbox has three rotational axes which are parallel and are located in a single plane. A cycloidal gearbox has excellent torsional stiffness and shock load capacity. It also ensures constant angular velocity, and is used in high-speed gearbox applications.
A cycloidal gearbox consists of an input shaft, a drive member and a cycloidal disc. The disc rotates in one direction, while the input shaft rotates in the opposite direction. The input shaft eccentrically mounts to the drive member. The cycloidal disc meshes with the ring-gear housing, and the rotational motion of the cycloidal disc is transferred to the output shaft.
To calculate the rotational direction of a cycloidal gearbox, the cycloid must have the correct angular orientation and the centerline of the cycloid should be aligned with the center of the output hole. The cycloid’s shortest length should be equal to the radius of the pin circle. The cycloid’s largest radius should be the size of the bearing’s exterior diameter.
A single-stage gear will not have much space to work with, so you’ll need a multistage gear to maximize space. This is also the reason that cycloid gears are usually designed with a shortened cycloid.
To calculate the most efficient tooth profile for a cycloidal gear, a new method was devised. This method uses a mathematical model that uses the cycloid’s rotational direction and a few other geometric parameters. Using a piecewise function related to the distribution of pressure angle, the cycloid’s most efficient profile is determined. It is then superimposed on the theoretical profile. The new method is much more flexible than the conventional method, and can adapt to changing trends of the cycloidal profile.

Design

Several designs of cycloidal gearboxes have been developed. These gearboxes have a large reduction ratio in one stage. They are mainly used for heavy machines. They provide good torsional stiffness and shock load capacity. However, they also have vibrations at high RPM. Several studies have been conducted to find a solution to this problem.
A cycloidal gearbox is designed by calculating the reduction ratio of a mechanism. This ratio is obtained by the size of the input speed. This is then multiplied by the reduction ratio of the gear profile.
The most important factor in the design of a cycloidal gearbox is the load distribution along the width of the gear. Using this as a design criterion, the amplitude of vibration can be reduced. This will ensure that the gearbox is working properly. In order to generate proper mating conditions, the trochoidal profile on the cycloidal disc periphery must be defined accurately.
One of the most common forms of cycloidal gears is circular arc toothing. This is the most common type of toothing used today.
Another form of gear is the hypocycloid. This form requires the rolling circle diameter to be equal to half the base circle diameter. Another special case is the point tooth form. This form is also called clock toothing.
In order to make this gear profile work, the initial point of contact must remain fixed to the edge of the rolling disk. This will generate the hypocycloid curve. The curve is traced from this initial point.
To investigate this gear profile, the authors used a 3D finite element analysis. They used the mathematical model of gear manufacturing that included kinematics parameters, output moment calculations, and machining steps. The resulting design eliminated backlash.helical gearbox

Sizing and selection

Choosing a gearbox can be a complex task. There are many factors that need to be taken into account. You need to determine the type of application, the required speed, the load, and the ratio of the gearbox. By gaining this information, you can find a solution that works best for you.
The first thing you need to do is find the proper size. There are several sizing programs available to help you determine the best gearbox for your application. You can start by drawing a cycloidal gear to help you create the part.
During sizing, it is important to consider the environment. Shock loads, environmental conditions, and ambient temperatures can increase wear on the gear teeth. The temperature also has a significant impact on lubrication viscosities and seal materials.
You also need to consider the input and output speed. This is because the input speed will change your gearbox ratio calculations. If you exceed the input speed, you can damage the seals and cause premature wear on the shaft bearings.
Another important aspect of sizing is the service factor. This factor determines the amount of torque the gearbox can handle. The service factor can be as low as 1.4, which is sufficient for most industrial applications. However, high shock loads and impact loads will require higher service factors. Failure to account for these factors can lead to broken shafts and damaged bearings.
The output style is also important. You need to determine if you want a keyless or keyed hollow bore, as well as if you need an output flange. If you choose a keyless hollow bore, you will need to select a seal material that can withstand the higher temperatures.
China RV E Series High Load Capacity Cycloidal Pin-Wheel Reducer Robot Joint Gearbox     cycloidal gearbox manufacturersChina RV E Series High Load Capacity Cycloidal Pin-Wheel Reducer Robot Joint Gearbox     cycloidal gearbox manufacturers
editor by CX 2023-03-27